

Acute variceal bleeding – How can we improve outcomes?

Julien Bissonnette Service d'hépatologie du CHUM February 28th, 2020

Financial Interest Disclosure

(over the past 24 months)

Commercial Interest	Relationship
Gilead Sciences	Speaker fees
Mallinckrodt Pharma.	Investigator

Current status

Current status

Current status

Outline

- Esophageal varices: before and during the endoscopy
- Esophageal varices: after the endoscopy
- Esophageal varices: after discharge
- Gastric varices

Outline

- Esophageal varices: before and during the endoscopy
- Esophageal varices: after the endoscopy
- Esophageal varices: after discharge
- Gastric varices

Patient stratification

• Identification of patients at risk of rebleeding and death

Criteria	6-week mortality
MELD <u>></u> 19 vs < 19	46 vs 8%
Child C and creatinine > 88 μ M (ChildC-C1)	52 vs 10%
Child C vs Child B	36 vs 12%
Child B with active bleeding/ChildC vs others	28 vs 7%
Child B with active bleeding vs no active bleeding	12 vs 12%
Hepatic venous pressure gradient <u>></u> 20 vs < 20 mmHg	64 vs 20% at 1 y

Conejo Clin Gastroenterol Hepatol 2018, Hernández-Gea J Hepatol 2020

Transfusion strategy in variceal bleeding

 RCT comparing restrictive (target hemoglobin > 70g/L vs liberal > 90 g/L) transfusion strategies

	n	6 week mortality HR	P value
All patients	889	0.55 (0.33-0.92)	0.02
Cirrhotics	277	0.57 (0.30-1.08)	0.08
Child A-B	222	0.30 (0.11-0.85)	0.02
Child C	55	1.04 (0.45-2.37)	0.91
Variceal bleeding	190	0.58 (0.27-1.07)	0.26

Villanueva N Engl J Med 2013

Transfusion strategy in variceal bleeding

 RCT comparing restrictive (target hemoglobin > 70g/L vs liberal > 90 g/L) transfusion strategies

	n	6 week mortality HR	P value
All patients	889	0.55 (0.33-0.92)	0.02
Cirrhotics	277	0.57 (0.30-1.08)	0.08
Child A-B	222	0.30 (0.11-0.85)	0.02
Child C	55	1.04 (0.45-2.37)	0.91
Variceal bleeding	190	0.58 (0.27-1.07)	0.26

Avoid volume overexpansion that will increase variceal pressure

Choice of vasoactive agent

•	Octreotide is the standard
	treatment in North America

- Terlipressin not approved by Health Canada or FDA
- Promising results in HRS1 from the CONFIRM trial
- Historical studies demonstrated survival benefit with terlipressin in AVB
- Large RCT comparing terlipressin, somatostatin and octreotide

	Terlipressin (n = 261)	Octreotide (n = 260)	р
Active bleeding at endoscopy	43.7%	43.5%	NS
Rebleeding at day 5	3.4%	3.4%	NS
Mortality	8.0%	8.9%	NS

Garcia-Tsao Hepatology 2017, Wong AASLD 2019, Levacher Lancet 1995, Seo Hepatology 2014

Hemostatic powder in acute variceal bleeding?

- Good results in short term endoscopic hemostasis
- Decrease in 6-week mortality (7% vs 30%, p=0.006)

Ibrahim Gut 2018

Hemostatic powder in acute variceal bleeding?

- Interesting option if:
 - Endoscopist unqualified for treatment (esophageal or gastric varices)
 - Massive bleeding
- Highlights importance of early endoscopic treatment

Use of esophageal stents for refractory bleeding

- Alternative to balloon tamponade
- 13.5 cm X 3.0 cm stent
- Solely for esophageal varices
- Should be left in place for < 7 days

Use of esophageal stents for refractory bleeding

	Esophageal stent (n=13)	Balloon tamponade (n=15)	P-value
MELD	16.5	17	NS
Adverse events	6	14	0.024
Absence of bleeding at day 15	85%	47%	0.037
Survival at day 15	69%	47%	NS
Survival at 6 weeks	54%	40%	NS

Escorsell Hepatology 2016

Use of esophageal stents for refractory bleeding

- Published results
 - Hemostatic success: 79-96%
 - Rebleeding rate: 18-29%
 - 30-day survival: 64-68%
 - High rates of stent migration

• Hemostatic and survival benefit in acute-on-chronic liver failure (ACLF) patients

Marot Aliment Pharmacol Ther 2015, McCarty Dig Endosc 2016, Pfisterer Liver Int 2018, Maiwall Dig Dis Sci 2018

Outline

- Esophageal varices: before and during the endoscopy
- Esophageal varices: after the endoscopy
- Esophageal varices: after discharge
- Gastric varices

TIPS

Objective : porto-systemic gradient < 10 mmHg

Rossle J Hepatol 2014

Common indications for TIPS in AVB

• Bleeding not controlled by endoscopic therapy

• Early rebleeding

TIPS in unselected patients

- Randomization after initial stabilization and endoscopy for gastric or esophageal variceal bleeding
- All comers with cirrhosis, CPT < 13, no advanced HCC, no MOF
- 37 TIPS vs 35 endoscopic treatment + β-blockers

Holster Hepatology 2016

TIPS based on HVPG

- Consecutive patients with AVB treated by sclerotherapy
- HVPG measurement within 24h
- TIPS vs SMT in those > 20 mmHg

Early TIPS for acute variceal bleeding

- Inclusion criteria
 - Esophageal variceal bleeding
 - Child C (10-13)
 - Child B (7-9) with active bleeding
- Exclusion criteria
 - CHC beyond Milan criteria
 - Complete portal vein thrombosis
 - Creatinine > 266 μ M
 - Heart failure

Early TIPS for acute variceal bleeding

No difference in the rates of hepatic encephalopathy

Garcia-Pagan N Engl J Med 2010

Early TIPS: validation studies

Observational study

Results from RCT reproduced

Garcia-Pagán J Hepatol 2013

Early TIPS: validation studies

Hernández-Gea Hepatology 2018

Early TIPS

- 132 patients with Child B or C cirrhosis and AVB randomized after initial endoscopic therapy
- 86 early TIPS vs 46 standard medical treatment
- Mostly young patients with HBV cirrhosis and Child-Pugh B

	TIPS	SMT	р
Free from rebleeding at 1y	89%	66%	0.001
6-week survival	99%	82%	0.02
1-year survival	86%	73%	0.046
Hepatic encephalopathy	35%	36%	NS
Serious adverse events	12%	24%	NS

Lv Lancet Gastroenterol Hepatol 2019

Early TIPS: the real life

- 964 patients with portal hypertension-related bleeding
- 326/931 eligible for early TIPS
 - 57 (18%) underwent TIPS
 - 22 (7%) underwent an early TIPS
 - No trend in mortality benefit
- Reasons for not performing early TIPS
 - No local availability
 - Lack of belief in beneficial effect

Early TIPS: bottom line

- Mortality benefit demonstrated in two RCT
- Active bleeding criteria put into question
- Availability is an issue
- Are results from European and Asian populations valid in North America?
- RCT underway with results expected soon
 Scotland (NCT02377141) Child ≥ 8
- Decision on a case-by-case approach for now

Outline

- Esophageal varices : before and during the endoscopy
- Esophageal varices : after the endoscopy
- Esophageal varices : after discharge
- Gastric varices

Importance of beta-blockers in Child B/C patients

- Benefit of combination therapy (BB+EVL) only proven for reducing rebleeding rate
- Meta-analysis using individual patient data (n = 815)

Albillos Hepatology 2017

Importance of beta-blockers in Child B/C patients

- Benefit of combination therapy (BB+EVL) only proven for reducing rebleeding rate
- Meta-analysis using individual patient data (n = 815)

Importance of beta-blockers in Child B/C patients

- Benefit of combination therapy (BB+EVL) only proven for reducing rebleeding rate
- Meta-analysis using individual patient data (n = 815)

Albillos Hepatology 2017

Beta-blockers in advanced cirrhosis: is there still a controversy?

	Leithead 2015	Waitlisted	↓ Mortality	
Studies	Mookerjee 2016	ACLF	↓ Mortality	
chowing	Aday 2016	Ascites	↓ Mortality	
snowing	Bang 2016	Ascites	↓ Mortality (dose < 160 mg/d)	
benefit	Sinha 2017	Ascites	\downarrow Mortality (carvedilol)	
	Onali 2017	Ascites	↓ Mortality	
	Galbois 2011	Sepsis in ICU	Mortality	
	Robins 2014	Ascites	Survival	
_	Mandorfer 2014	Ascites/SBP	\downarrow Mortal. if ascite/ \uparrow Mortal. After SBP	
Neutral	Kimer 2015	Refractory ascites	Mortality	
studies	Bossen 2016	Ascites	Mortality	
	Njei 2016	Ascites	个 Mortality w/ carvedilol	
	Kim 2017	Waitlisted	\downarrow Mortal. w/o ascites/ \uparrow Mortal. if ascites	
	Bhutta 2017	Ascites, hospit.	Mortality	
	Sersté 2010	Refractory ascites	个 Mortality	
Studies	Sersté 2011	Refractory ascites	Λ Post paracentesis circulatory dysfunction	
showing	Sersté 2015	Alcoholic hepatitis	↑ АКІ	
ncreased risk	Kalambokis 2016	At risk varices	个 Mortality/AKI if Child C	

Rodrigues JHEP Rep 2020

Beta-blockers in advanced cirrhosis: is there still a controversy?

	Leithead 2015	Waitlisted		\downarrow Mortality
Studies	Mookerjee 2016	ACLF		\downarrow Mortality
chowing	Aday 2016	Ascites		\downarrow Mortality
Showing	Bang 2016	Ascites	↓ Moi	rtality (dose < 160 mg/d)
benefit	Sinha 2017	Ascites	\checkmark	Mortality (carvedilol)
	Onali 2017	Ascites		\downarrow Mortality
	Galbo Con	sider discontir	nuation if :	Mortality
	Robi			Survival
	Mandc –	Systolic $BP < S$	0 mmHg	f ascite/ 个 Mortal. After SBP
Neutral	Kime _	Acute kidne	v injurv	Mortality
studies	Boss	Uvnonatromi	(- 120)	Mortality
	Nje 🗕	пуропастепна	a (< 150)	lortality w/ carvedilol
	Kim	- ? SBP		/o ascites/个Mortal. if ascites
	Bhutta 2017	Азсиез, позри.		Mortality
	Sersté 2010	Refractory ascites		个 Mortality
Studies	Sersté 2011	Refractory ascites	个 Post parac	entesis circulatory dysfunction
showing	Sersté 2015	Alcoholic hepatitis		↑ АКІ
increased risk	Kalambokis 2016	At risk varices	ተ እ	Iortality/AKI if Child C

Rodrigues JHEP Rep 2020

Statins as secondary prevention

- Simvastatin lowers HVPG
- Decreased risk of death or decompensation in cohorts of patients with viral cirrhosis
- RCT of simvastatin vs placebo as secondary prophylaxis over SMT
- RCTs underway
 - LIVERHOPE (NCT03150459)
 - SACRED (NCT03654053)
 - STATLiver (NCT04072601)

Abraldes, Villanueva Gastroenterology 2016

Abraldes Gastroenterology 2009, Chang Hepatology 2017, Mohanty Gastroenterology 2016

Statins as secondary prevention

- Simvastatin lowers HVPG
- Decreased risk of death or decompensation in cohorts of patients with viral cirrhosis
- RCT of simvastatin vs placebo as secondary prophylaxis over SMT
- RCTs underway
 - LIVERHOPE (NCT03150459)
 - SACRED (NCT03654053)
 - STATLiver (NCT04072601)

Abraldes, Villanueva Gastroenterology 2016

Abraldes Gastroenterology 2009, Chang Hepatology 2017, Mohanty Gastroenterology 2016

Outline

- Esophageal varices: before and during the endoscopy
- Esophageal varices: after the endoscopy
- Esophageal varices: after discharge
- Gastric varices

Gastric variceal bleeding

- Lower endoscopic hemostatic success
- Higher rates of treatment complications
- Higher mortality

• Endoscopic variceal obliteration

Anatomy of gastric varices

Garcia-Pagán Clin Gastroenterol Hepatol 2014

Endovascular treatment options

Creation of a porto-systemic shunt

Garcia-Pagán Clin Gastroenterol Hepatol 2014

Endovascular treatment options

Garcia-Pagán Clin Gastroenterol Hepatol 2014

Endovascular treatment options

Saad Clin Liver Dis 2014, Garcia-Pagán Clin Gastroenterol Hepatol 2014

TIPS, BRTO or both?

- No prospective comparative study
- Hemostatic success > 90% with both
- Lower rate of ascites with combined technique
- Lower rebleeding rate with comined embolization
- Embolization usually performed based on post-TIPS portography

	BRTO (n = 462) vs TIPS (n = 219)
Technical success	p = NS
Hemostasis	p = NS
Complications	p = NS
Rebleeding	Favors BRTO
Encephalopathy	Favors BRTO
1-year survival	Favors BRTO

Paleti J Clin Gastroenterol 2019, Chen Radiology 2013, Gaba J Vasc Interv Radiol 2012, Saad Am J Gastroenterol 2013

TIPS, BRTO or both?

- Factors to take into consideration
 - Presence of ascites
 - Presence of encephalopathy
 - Individual vascular anatomy
 - Contra-indications to TIPS
 - Local experience

Conclusions

- New options for initial hemostasis
- TIPS: to be considered in patients at high risk, once they are adequately identified
- Importance of beta-blockers in secondary prophylaxis
- Precise role of statins to be defined
- Gastric varices: discuss with your interventional radiologists

HVPG-guided pharmacologic treatment

TIPS: Systematic early revision?

• General anesthesia may undertestimate the real pressure gradient

	Immediate	Early (1-14d)	P-value
Final pressure	8.5±3.5	10±3.5	0.01
gradient (mmHg)			

- Fewer complications if gradient < 12 mmHg on follow-up (HR 0.11 [0.04-0.27], p < 0.001)
- Consider in those with final PPG 10-12 mmHg or those with massive bleeding?