Helicobacter pylori-Induced Gastric Cancer: Mechanisms

Rick Peek

Vanderbilt University Medical Center

Host responses to *H. pylori* strain-specific virulence constituents influence carcinogenesis

Gastric inflammation

Decades

Gastric adenocarcinoma

Adenocarcinoma of the Stomach

A leading cause of cancer-related death worldwide

>800,000 deaths/year

Analysis of the incidence of metachronous gastric cancer, according to *H. pylori* status after trial medication

Host responses to *H. pylori* strain-specific virulence constituents influence carcinogenesis

Gastric inflammation

Decades

Gastric adenocarcinoma (1-3%)

Pathologic interactions that mediate *H*. *pylori*-induced gastric cancer

Microbial constituents

Gastric

cancer

Host
effectors

Environmental/ Dietary co-factors

Iron deficiency increases the risk for gastric cancer

H. pylori infection is associated with iron deficiency, which affects 30% of the world's population

Iron deficiency is associated with a high incidence of Preneoplastic gastric lesions Gastric adenocarcinoma

Development of premalignant and malignant lesions following infection with *H. pylori* 7.13

Franco et al., *PNAS*

6-12 week infection

Dietary iron depletion increases the frequency of dysplasia and carcinoma

Iron deficiency heightens *H. pylori*induced inflammation in C57Bl/6 mice

Iron deficiency heightens *H. pylori*induced inflammation in INS-GAS mice

Isolation of in vivo-adapted H. pylori strains

In vivo-adapted strains Iron-replete gerbils *In vivo*-adapted strains Iron-deplete gerbils

In vivo-adapted *H. pylori* strains subjected to whole genome sequencing

Noto et al., Gut

SNPs identified following *in vivo*-adaptation to conditions of iron deficiency

Gene	Function	HPB8 locus
Putative OMP	Outer membrane protein	593
Putative OMP	Outer membrane protein	626
cagY	Type IV secretion system	716
oipA	Outer inflammatory protein	838
Putative OMP	Outer membrane protein	1104
Putative OMP	Outer membrane protein	1139
fur	Ferric uptake regulator	1145

Noto et al., Gut

Nariño, Colombia

Low-risk area (6/100,000)

High-risk area (150/100,000)

H. pylori isolates from patients with premalignant lesions more frequently harbor the FurR88H variant

SNPs identified following *in vivo*-adaptation to conditions of iron deficiency

Gene	Function	HPB8 locus
Putative OMP	Outer membrane protein	593
Putative OMP	Outer membrane protein	626
cagY	Type IV secretion system	716
oipA	Outer inflammatory protein	838
Putative OMP	Outer membrane protein	1104
Putative OMP	Outer membrane protein	1139
fur	Ferric uptake regulator	1145

Noto et al., Gut

Molecular signaling alterations induced by *cag* T4SS-mediated translocation of CagA

Iron depletion and assembly of the *cag* type IV secretion system

Iron-replete

Iron depletion augments assembly of the *cag* type IV secretion system

Iron-replete

Iron-depleted

CagA-expressing cells acquire carcinogenic phenotypes

Self-renewing gastric organoid

Microinjection of organoids

H. pylori increases proliferation

Uninfected

H. pylori cag⁺ strain 7.13

Wroblewski et al., Gut

Proliferation in gastric organoids infected by wild-type and isogenic mutant *cagA⁻ H. pylori*

Wroblewski et al., Gut

Development of human gastroid monolayers

Nuclear localization of β -catenin is selectively induced by $cag^+ H$. *pylori*

Uninfected

β-catenin (red) nuclei (blue) *H. pylori* (green)

H. pyloriinfected

Differentiation of human gastroids

Bartfeld et al., Gastroenterology

How do *H. pylori cag*⁺ strains interact with gastric progenitor/stem cells?

H. pylori colonize the progenitor cell compartments of murine gastric glands

Sigel et al., *Gastroenterology*

H. pylori colonizes the Lgr5 stem cell compartment in the antrum

Axin2 is expressed in Lgr5⁺ cells and a distinct population of Lgr5⁻ stem cells

ki67 Axin2

Sigal et al., *Nature*

Lrig1⁺ stem cells and *H. pylori*

Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1) marks a population of quiescent stem cells.

Lrig1 functions as an inducible, negative feedback inhibitor of pan EGFR signaling.

Present in both antral and corpus epithelium and expression is increased in infected mice (Noto et al.).

Loss of one *Apc* allele in Lrig1⁺ cells, thereby increasing β catenin activation, uniformly leads to gastric hyperproliferation, hyperplasia, and dysplasia.

Lrig1 expression increases in gastric premalignant lesions in humans

Wroblewski et al., PNAS

Lrig1 lineage tracing mouse model

2mg tamoxifen i.p.
Infect with *H. pylori* wild-type cag⁺ strain or *H. pylori* isogenic cag⁻ mutant
2 week and 8 week infection

H. pylori increases Lrig1 progenitor activity in a *cag*-dependent manner

Uninfected Wild type cag H. pylori

Wroblewski et al., PNAS

Lrig1 lineage traced cells co-localize with chief cells and SPEM cells in response to *cag*⁺ *H. pylori*

Uninfected

H. pylori WT

H. pylori cag⁻

YFP (Lrig1) GSII lectin (SPEM) Intrinsic factor

Wroblewski et al., PNAS

H. pylori colonization of polarized epithelium

Tan et al., *PLoS Pathogens*

Model of *H. pylori*-induced transferrin recycling under conditions of iron depletion

Apical cell surface

Basolateral cell surface

Model of *H. pylori*-induced transferrin recycling under conditions of iron depletion

Model of *H. pylori*-induced transferrin recycling under conditions of iron depletion

Estimated odds ratios for gastric cancer incidence for *H. pylori*-, garlic-, or vitamin-treatment

	Fully adjusted	
	OR	
Treatment	(95% CI)	Р
H. pylori	0.61 (0.38-0.96)	0.032
Garlic	0.80 (0.53-1.20)	0.28
Vitamin	0.81 (0.54-1.22)	0.32

Ma et al., JNCI

Estimated odds ratios for gastric cancer incidence for *H. pylori*-, garlic-, or vitamin-treatment

	Fully adjusted	
	OR	
Treatment	(95% CI)	Р
H. pylori	0.61 (0.38-0.96)	0.032
Garlic	0.80 (0.53-1.20)	0.28
Vitamin	0.81 (0.54-1.22)	0.32

Ma et al., JNCI

Shandong Intervention Trial

Efficacy of *H. pylori* eradication therapy at 15 years of follow-up: 47%

What are the roles of non-*H. pylori* constituents of the gastric microbiota in disease outcomes enhanced by iron deficiency? Compositional differences in the gastric microbiome with and without *H. pylori*

Actinobacteria Firmicutes Proteobacteria Bacteroidetes Cyanobacteria Fusobacteria H. pylori (–) stomach

Cho and Blaser, *Nat Rev Gen*, 2012 Abreu and Peek, *Gastroenterology*, 2014

Gastric microbiota in *H. pylori*-infected and uninfected mice

Lofgren et al., Gastroenterology

Gastric intraepithelial neoplasia (GIN) in conventionally housed (SPF) versus germ-free mice

Lofgren et al., Gastroenterology

Distribution of operational taxonomic units (OTUs) from bacterial DNA integrations in gastric adenocarcinoma

- non-Proteobacterial species
- Unassigned bacteria
- Proteobacteria

Riley et al., PLoS Comp Bio, 2013

Multi-decade development of gastric adenocarcinoma initiated by *H. pylori*

Plottel and Blaser, Cell Host and Microbe, 2013

Nariño, Colombia

Low-risk area (6/100,000)

High-risk area (150/100,000)

Cancer risk region-specific known bacteria

Low Risk

Staphylococcus sp. Streptococcus oralis Neisseria flavenscens Porphyromonadaceae Flavobacterium sp. TM7 Rothia sp. Prevotella oris Capnocytophaga sp. Actinomhyces sp Haematobacter sp

<u>High Risk</u>

Leptotrichia wadei Veillonella sp

Yang et al., Science Reports

Cancer risk region-specific known bacteria

Low Risk

Staphylococcus sp. Streptococcus oralis Neisseria flavenscens Porphyromonadaceae Flavobacterium sp. TM7 Rothia sp. Prevotella oris Capnocytophaga sp. Actinomhyces sp Haematobacter sp

11

410 bacterial types

High Risk

Leptotrichia wadei Veillonella sp

Yang et al., Science Reports

Gastric microbiome dysbiosis across stages of gastric carcinogenesis

Coker et al., Gut, 2018

Correlation strengths of gastric cancer enriched and depleted bacteria with disease progression

co-excluding	co-occurring
r < -0.6	r > 0.6
r < - 0.4	r > 0.4
<u> </u>	r > 0.2

Coker et al., Gut, 2018

Gastric cancer-enriched oral bacterial taxa with significant interactions among ecological networks

> Peptostreptococcus Streptococcus Parvimonas Slackia Dialister

> > Coker et al., Gut, 2018

Can results in China be extrapolated to other populations? Gastric microbiota profiles differ in chronic gastritis and gastric carcinoma

Ferreira et al., Gut, 2017

Microbial dysbiosis is associated with gastric carcinoma

Ferreira et al., Gut, 2017

Dietary iron levels do not alter gastric microbial communities in *H. pylori*-infected gerbils

Iron levels in the diet do not alter composition of the gastric microbiota, when stratified by phyla levels, in *H. pylori*-infected gerbils

H. pylori infection alters the gastric mucosal microbiota in a *cagA*-dependent manner

NMDS Axis 1

Presence of CagA alters composition of the gastric microbiota, when stratified by phyla levels, in *H. pylori*-infected gerbils

Can we use novel technologies to identify new virulence factors and comprehensively establish their role in our chronic infection models of iron deficiency?
Isolation of in vivo-adapted H. pylori strains

In vivo-adapted strains Iron-replete gerbils *In vivo*-adapted strains Iron-deplete gerbils

Metabolomics pathways altered in *H. pylori* strains isolated from iron-depleted gerbils

Metabolic Pathways

Alanine and aspartate metabolism

Biopterin metabolism

Butanoate metabolism

Cysteine and methionine metabolism

Drug metabolism

Glycerophospholipid metabolism

Glycine and serine metabolism

Histidine metabolism

Linoleate metabolism

Pyrimidine metabolism

Taurine and hypotaurine metabolism

Tryptophan metabolism

Tyrosine Metabolism

Upper endoscopy in gerbils

Helicobacter pylori-induced gastric cancer: an axis of evil

cag TFSS

Acknowledgements

Peek Lab Seth Ogden Daniel O'Brien Aime Franco Lydia Wroblewski Shannon Allen Uma Krishna Judith Romero Toni Nagy Dawn Israel Jennifer Noto **Giovanni Suarez** Matt Varga Sam Dooyema Shailja Shah

Jay Solnick Steffen Backert Barbara Schneider Keith Wilson Doug Morgan Manuel Amieva Carolina Sierra Kay Washington Blanca Piazuelo Tim Cover Jen Gaddy Jim Fox Constanza Camargo Holly Algood

